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FOREWORD

This report is q technical summary reporting the pro-

gress of a study conducted in the Mathematics Department

and the Computer Center of Auburn University. The study

is focused toward fulfillment of Contract No. DAAH01-68-C-

0296 granted to Auburn University by the Army Missile Command,

Huntsville, Alabama.
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ABSTRACT

A FORTRAN IV program which implements the Polynomial

Manipulation System (PMS) is presented and described. PMS

uses the Euclidean Algorithm to reduce a system of poly-

nomials in several variables to a resultant system which

can be solved sequentially as polynomials in one variable

(Kronecker's method). PMS is described briefly and re-

ferences are given to more complete discussions and to

other pertinent literature.
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I. INTRODUCTION

The Polynomial Manipulation System (PMS) uses the

Euclidean Algorithm for finding the eliminant and the

greatest common divisor (g.c.d.) of two multi-variable

polynomials. All polynomials involved are represented

symbolically; PMS is a computer program whose input is

the symbolic representation of two polynomials and whose

output is (normally) the symbolic representation of

their g.c.d. and eliminant.

The uneerlying theory and the application of PMS to

the problem of solving systems of polynomial equations is

discussed in [lI, [2], and [31. The present report de-

scribes a FORTRAN IV implementation of PMS developed on

the IBM 360 Model 50 at Auburn University.

1The program is described in Section Ii, the basic flow

charts are given in Section III, Input/Output is discussed

in Section IV, and efficiency of the method is discussed in

Section V along with possible future work. The FORTRAN

program is reproduced in Appendix A. Appendix B contains

a simple example of the use of FMS for reduction of three

polynomial equations in three variables to a resultant sys-

tem which can be solved in sequence as polynomials in one

variable.

1



II. PROGRAM DESCRIPTICN

The PMS program is basically a main program with four

subroutines, only one of which is significant. The other

three subroutines are used for output, format headings

on printed output and scaling of coefficients when they

become large enough to possibly cause an overflow. In its

present form the program is limited in that it is set up

to use only 175K of IBM 360 storage. This limitation

places constraints on the program which allows storage of

only 50,000 polynomial entries (each term has n + 1 entries

where n is the number of variables in the polynomial) which

are presently set up as follows:

1) The pair of polynomials has, at most, four variables.

2) Each polynomial has at most 3160 terms.

3) The leading coefficient polynomials, to be defined

below, can have, at most, 400 terms.

Minor modifications could increase the number of terms

or variables or size of leading coefficients at the cost

of decreasing the others or by use of a greater amount of

machine storage. Still larger polynomials could be processed

by use of tape, disc or other storage, but this has not been

effected since such increases would only tend to accentuate

certain disadvantages of the method to be discussed in

Section V.

Consider the pair of polynomials U,T : E NR. Let x ,...,1 n

denote the variables. Each of these polynomial functions

can be considered as a pclynomial in x whose coefficients
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would then be polynomial functions from EN-i to R. Let. U0

and TO denote the polynomials in x ,...,x which are the2 n

leading coefficients of U and T respectively considered as

polynomials in x , and let u and t denote the degrees of U

and T in x . We may assume t>u. Consider the polynomial

R defined by

R = UOT - T0Uxt - u

R is a polynomial in x ,...,x . Considering R as a poly-

nomial in x with polynomial coefficients, it is seen that
1

Degree(R)<t. Let Degree(R) = r. If r>u, let T - R and re-

peat above procedure. If r<u, let T = U and U - R and

repeat the above procedure. After a finite number of ap-

plications of this algorithm a polynomial R will be found

whose degree in x is zero. Thus R will be a polynomial in
1

x ,x ,...,x . It is easily seen that at each stage R has
2 3 n

any zeros that are common to U and T. The R which is free

of x is called the eliminant of U and T.I

III. BASIC FLOW CHARTS

The flowcharts for output and scaling will be omitted

as their detail is not significant to the main purpose

of the program. The main program flow chart is given on

page 4.
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MAIN PROGRAM

Read U,T

0 0
Compute U ,T 0

Print U,T

0
4

Determine which of U andhas greatest degree inI
x1. If it Is T continue,if n~t interchange U andT, U and T

Call REIU

and Form R

Scale if necessary

If R is free of x1, print
R and return to beginning
to read two new polynomials.
If not, let T R

L=R
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RESIDUE SUBROUTINE

Form U 0T

Form -TUxtu
1

R = UcT-TO
U xt - u

1

T R

Calculate new T
O

Is t 0?

no , yes
IZ

Return to Return.
Continue We Have
Processing Eliminant
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IV. INPUT/OUTPUT

The polynomials U and T are read in separately. The

first card for each polynomial contains the number of vari-

ables in the polynomial in columns 31-34 in integer format,

right Justified. The number of terms in the polynomial

appear in columns 35-38 in integer format, right justified.

Following this card the terms of the polynomial appear, one

term per card. The coefficient appears in columns 1-16 in

E format; following this are the exponents of the variables

right justified in integer format in columns 17-21, 22-26,

27-31, etc.

The output of this program is available in any medium,

although the program is currently set up for printed output

only.

V. EFFICIENCY AND FUTURE WORK

The PMS program has not proved useful as a method of

reducing polynomial systems of equations to a resultant

system for the following reasons:

1) Storage efficiency is low. An inordinate amount

of core is needed to process many simple appearing systems

of equations.

2) Time efficiecy is low. Extreme amounts of time

are needed to solve all but the most simple problems. As

few aF four equations in four variables with small exponents

(on the order of ten or less) take many hours of machine

time to reach a solution. Simpler problems are solvable in
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small amounts of time, but other methods without these dis-

advantages can be used to solve these systems.

3) Certain types of systems give solutions which have

a low order of accuracy. Several articles, D3., C], [6],

have been published discussing this problem as well as the

two above.

The basic PMS program will be examined and modified to

determine if it is of value in algebraically solving simple

systems of differential equations.
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APPRTTX A
FORTRAY IV Pror.em Listing

T I K T

P I I A r n-

I :2,LS1I I

[I , v.. i,

" 7 , -

sr":..!= 3 -. ,\5 -L ' *

I F -.' I ( A I -At , 10

,q %I A L,,i .' ;

;:(. ' -- -l),

MAX A!,.' I

DO 15 J =1 , . I .,
- I r' j '" - 111 1 1 5 0 , :0

j(f ,,l , I I I J

1:, F,! < I '!II I t'- 4.I U = '.

U!q",9 J I R I J I;[." ]
!!J" .".; X .111 J) f- 5,56 L,55

DF' .MA =XIltl I. ,.*rL L:)= [,4,I

-F''5 , HX.i ) C I. 6 q l



53 IUMAX(K-19JUW IR(KvJ)

00 10 J 1,NTERMI

00101IO=1,MAX .... . . ..

DO 9 J = ItNTF.RM2-
- i J -f4=TiJ)

009 1=1,N VAR?
- 9- - . Rl[,J)=lT(tJ) .

CALL PRI'NT(2,NTFRM2,O0NVAR2)
H-INVAR2 GCE. NVARL) GO Tr) 1075

I . MAX = NVeARI

-NVAR.? = 'JVAR2 + 1
on 104 J = NVAR2 ,MAXA
DO 114 K = ,NTERM2.

104 IR(J,K) = 0
NVAR? = MAX

1075 M4AX =NVAR?
JPWRT
DOf 60 1 =ItMTFkM2
TF(JPWRT - IR(1,JI) 51960,5-0

51 JPWRT =JH(l,j)
60 CrINT !NUF

0O 56 J = 1, NTERM2
IF(JPWRT - I,J)) 56,57,3i6

57 TMAX(JT) =R(J).

~' . FDO 5Rl K = 2#MAX

5t, ITTAX(K-1,JT) IR(VK,J)
56 CONTINUE

*-OfY R J =19NTERM2 A -

r(J)=R(J)
no81=l,mAX -.

IT( I tJ)=IR{ I J)
107 -- F4JPWRT-JPWRUJ) 70,71,71 .

K70 NN =JPWJRT
- JPWRT =JPWRU 

-

I JPWR(J =NN
MAXT=NTFPMl -

IF(NTERMZGT.NTr7RMl) MAXT=-NTERM?
fD08011,MAX'
TFMP= I) .

Tf I) =TEMP

D~n8OJ=1,'IAXT

NN5 = JT
* JT = NN.

NN = NTFPMI
NTtERM1 = NTERN92
NTFRM12 = NN
NJN =NVARI
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NVARI = NVAR2
- NVAR2 = M

JJ=J'j
YI JT .GT. JJ) JJ=JT
MA = A-
DO 73 1 = 1, J1
TW=UM4AX( J)
tiMA((J) = TMAX(J)
TMAX(J)=TW
D073K1, MA
I TT= IUMAX(K, J)
IIMAMt,J) = ITMAX(K,J)

73 ITMAX(KJ)=Irl

71 C(ONT INI.W

IF(LM.EO.l) C.ALL SCALE?(NTCIRM1,NT[RM?,M4X)

101 CALL PrCS!LU (.NTFRM1,NTFM,MAX,JRij,JPWi T,JUJT)

IF(t.,'4 .F.,,. 1) CALL SC LF2(NTFk'-1,NrE-".M?, MAX)

1r(LS2. (u.1) CAttL SCtLE24NTFRMI, NTh-K2vAX)

2 001 LM=O
300 IP(LSI.E,.. ,-X(TI) 107

t Y~=(

301 CALL PRINT ( itJU, NTEF:M1,NTFR-A?, 'AX)

1O0o,10 rrfhNmATUI- , rj3HSCALE, 13)

r!-'.RAT(3C)X,2I4)
4 r9ORMAT(F 16.7,1015)

FNI)
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C SUFARr'rIN FOR PRINTING THE TWOI PrLYN2IMIALS AND THE RESIDUE
C
C

SUe8RPUTINF PRINT fLvjUtNTFRM19NTFRM?,N)

C
TMPL IC I I T TEG-f7 *2( I-N)
C rr1;'A-,INI I 'AX( 400 1)IUMAX( 3 40t )' I TMAX 131400) ,TMAX(400 ) R 3160 1,

NTF{, .R ( "4 , 1 1TR.TL, I TIME S M(3160 9 1IJ (4 ,,31f 0) 9Tt 3 0) - XT( 4, 3 )},

NLSvLS1,L-1
C

I IL t.170. 1 e''1 T1- I h 310)
lr(I * t./) ,,T<IT 16,3111

IF L i') l ) '.Q TF I- 1 93 12,l
AI C~ L H) [ [ (:I I

315 C,]' ON T IP< " 1,- J

503 C I, P 1"= U-
C' T1, '!U

4*3 F r!P P, I ( I 1 7 v 9 1 115 t X )

311 Fl- 1T( j j,' THF PJI.YN2-IIAI I 1 ')
"31I f1P Y A IT( I- - Tf i7 00t YN:'V It T II')
310) c 'IR1A't T f - T HF Et. I I A N I S')

_ 4 1 r

--- rn.--'-"' I-



c. SJBq0'JTINE FOR P"RINTING~ 1EADINGS
SUBRUTINE PRITFH(K<)

THIS SUJBROUTINE MERELY PRINTS COLUMN HEADINGS FOR THE
c V, PR IAt' 'LES DEPFNflING ON THE NUMBER OF VARIABLES.

C. $4J IS ITS ONLY PURPOSE. IT WILL HANDLE UP TO 10
C. VARIAlALES,

GO TO (2l,22,p23,2,25,272F,29,3f),'
21 WRITE(69311

2? W.iT.E(hj32)

w R.TFf6,.331

.4 WkITEC61341
RFTUJRN

RETIWN:
7 WR I T E6, 36)

RET'jRN

I Wk ITE (6, 391
RFT'IRN
Wtl WI TVIt6,40)

31 FnRIAAT( 1HO,11HlCOEFFICIFNT-,OX,4HX(1))
3? FOR".A(l HO,IHCOEFFICIFENT,1QX,4HiX(1),5X,4HX(2))
33 FOPR'1AT( IHO,11HCnEFFICI[NT,1OK,4HX(1b,5X,4HX(2) ,5X,4HX(3))
34 FORMIAT(I1HO,11HCOEFFICIENT,1lOX,4HX(1j,5X,4HX(2),'iX,4HX(3),5X,4HX(4)

35 FORM'ATI 1HO,11HCf)I FICII NT,IOX,4HX(l),5P,4HX(2)t5X,4HX(31,5X,4HX(4)

1, 5X,4HXL 5)')
3b FOK,34AT( LHD,11HCOFFf-!CIEN'TIOX,4HX(1I,5X,4HiX(2),5X,4HX(3),5X,4HX(4)

37 FORAAT(tHOIIHCOEFFICIENT,IOX,4HX11)t5X,4HX(2),5X,4HXI3),5X,4HX(4)
l,5X,4HX(5),5X,4HXI6),5X,4HX(7))

38 FfRMAAT(IHO,11HCOEFFICIENT,1OX,4HX11),5X,4HX(2),5X,4HX(3),5X,4HX(4)
1, 5X, 4HX 15),5X ,4HX( 6) ,5X, 4HX( 7), 5X ,4HX( 3))

39 FORriAT( LHO,11HCOEFFICIENT,lOXr4HX(l),5X,4HX(2).5X,4HX(3),SXt4HX(4)
l,5X,4HX(5),5X,4HX(6),5X,4HIX(7),5X,4HX(',),5X,4HX(9))

40 FORMATi 1HO,11HCOEFFICIFNT,IOX,4HX(1)t5X,4HX(2),5X4HX(3)5X4HX14'
1,5X,4HX(5),5X,4HX(6),5Xt4HX(7),5X4HX(3l),5X4HX(9),5X,5HX11)
END
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r PESI) srHJ: jIr L I 'J 4NO FrFTs TFL-'MS

SORROOlT IN- RFSI I)IJ NTIJ ,NTT ,NV ,WJUt JPT9 JLtJ,.T)

IMPL IrIT IN--;FQ*?( I-N)

('l1k4:T (400) , HIAK( 1,40n),I TW( 3940) f A('+00 IsR3160) ,

1) 1MF [s 1V 1-1(5)

C

A=T I.

521n~ I P IK )I T( KJ)I

46 L S2 I
QF TUP "

45 (1 ) L It 3 = 1'( )

f'10 KK = 20V

0fl8'KK=1 , M
1Ff If&( ,sK).Nt.IR( 1,fl))rnTfla)
'P!7rO0KKK= 2vMV

700 CONT T I "4LJE

rj N"= MiM- 1

P( I LK) R ( I LK41 I

800 1 Rt AI ), I I ,I R f NPQ ILK+ 1.
I = I- I

70? 1- I

SO1 IF I .ir1(j" ';~r1c

12 FflPMATf i141,2il4TPi, MANY TFIR4S IN Pf.SIJUC)

I4 I = I +

?CFINT I 'Ij-
iq 0 J 1, Tl I-

~ I) 13



IF( e~lJ* F JPt )OT040

If' A~S - .Fh) 47,48,403
4g LS?=I

RF TI P. N

47 Or 41 L = It J1
-T A . ( I.)1 A

IPt~ I, = [il( ) + JPT -JPJ

M! 3 0 " = V

30 IR(K,I TTIAX(K-1,L) + IB(K)

Y)} 1 b f)T K =I , OP4 .
I F ( 1 ( I ",K , ql , .I R ( 1 I , 1 ) (3n T 3 q 0

k )NF I I K K , II

7K) C,T I Ni'U

!'( : : ) :v }+" I k(N) ;, , NI

++

3 51 0 0, 1V " " .} P t. K R f N, F r ( ,  I  I  r'  I

!=l-I

-3,- 7 f.'3" f

-3 7. 1 1 A !' .T 1-1 1, :

T I- 1

1 9,

V. Jr . =1 T

7 -),, ) 1 1 = ,

1:T 1 j v4R T 
I:( 

t ) )(j ) , !
.1> iTJ +NU I

T~. i:( W .) _ IB. T ,'S l , ; -

I~g .! A-.A X I T Y. I L)

. I K ) , V

III --

I ' JT "A X( -I T I Ol

J I N I II 
I

,}r.>/ l.J l , II =
7 '':>- ( Jl, I 1}-

'" .11 -- JT +~ I U I ~ tc'

Ir"( IM.X( "IT I. ";' *f I " f h) L "A --

fT"AX(K-1 ,J2)- "KJ

I~I1 N&I
1~4



nnlJi=i, I
TtJ) mRIJ)
ri I Lz I, NV
fTfLtJI=lR(L,J)

376 NTT=l
k, FTUR!

SUIpRltJT I NE SCALF2( NTFRMjtNTERM2,NV)
IMPL fr-IT 'NTF GEP*2( I -N)
Cr7WMMrN 'J *AX(40()IUMAX(3,40o),IrMAX( 3,4OO~ ,TMAX(4001,R(316o),

NLS2d. Si ,I1.
FQlI ITVALE N{E (NVAR I vMAX)
MAX =NV
NVAR?=NVARI
'n I I =19,9o

iJMAX(f) lJMAX(I)/j000.
I TMAX(U) TMAX(I)/1oOO.

Doi 7 J 1,NTFRM1
7 LU(J) = J(J)/IOOO.

fl 9 J = I,NTERM2
q T(J) = T(.J)f1000.

-IT!MFS = T1IMFS + I
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APPENDIX B

This appendix presents an example problem. The fol-

lowing system of three polynomials in three variables is

reduced to a single polynomial in one variable:

(1) x -+ x + x = 0
1 2 3

(2) x + x2  = 0
1 2

(3) x + x 2 = 0
1 3

First, x is eliminated between (1) and (2) producing

the following printout which has been labeled for expository

convenience:

COEFFICIENT x(l) x(2) x(3)
0.1000OOOE 01 1 0 0
O.1O00000E 01 0 1 0 (1)
O.looooooE 01 0 0 1

COEFFICIENT X(l) x(2) x(3)
O.1000OOE 01 1 0 0
O.1000000E 01 0 2 0 (2)

COEFFICIENT x(i) x(2) x(3)
0.1000000E 01 0 2 0

-0.lOOOOOOE 01 0 1 0
-0.100000E 01 0 0 1

Second, x is eliminated between (3) and (2) producing
1

the following printout:

COEFFICIENT x(1) x(2) x(3)
0.1000OOE 01 1 0 0
0.1ooooooE 01 0 0 2 (3)

COEFFICIENT x(1) x(2) x(3)
0.lO000OOE 01 1 0 0
0.lOOOOOOE 01 0 2 (2)

COEFFICIENT X(1) x(2) x(3)
0.1000000E 01 0 2 0 (
-0.1000000E 01 0 0 2 E2)



Finally (E ) and (E) are treated as a pair of poly-

nomials in two variables x and x 2 Then x (x in our first
1 2 1 2system) is eliminated, producing the following printout:

COEFFICIENT x(2)

O.1000000E 01 2 0-o.1000000E 01 1 0 (E)
-o.1000000E 01 0 1

COEFFICIENT X(1) x(2)
-O.1O00000E 01 2 0 (E)0.1000000E 01 0 2 2

COEFFICIENT x(i) x(2)
0.1000000E 01 0 4-0.2000000E 01 0 3 (E3)

(E ) is our eliminant free of x and x , so it can3 1 2
be solved. Using its solution (E) can then be solved.

2
Using this (2) can be solved and the solutions to the

resultant system (2), (E), (E) are the solutions to3

the system (1), (2), (3). Three other equations from these
six could have been taken to form the resultant system.

1
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DOCUMENT CONTROL DATA - R & D

I. OAIGINATSNS A&TIVIYV ma) NEmPONT S66U.,l 4bA&SUPlCATION

Auburn University Unclassified
Auburn, Alabama N/A

POLYNOMIAL MANIPULATION SYSTEM-FORTRAN IV PROGRAM41. 0,9
Technical r

B. AWINO0fp (" hmeo. 01010110 111MMft on)

Leland H. Williams
James R. Sidbury

1. NSPOYIT 0*U 70, TOTAL .. . -. $as ITm "0. OP .. a

November 1969 23 1 6
¢8 ONYNACY Ofl GAW? NO. 58. OIPIIAYOWS NUPON? NI ilINDb

DAJ-O-68-C-0296

. N /AgNO AU -T -6

of* t

None
80. (.t8?IJ1I S-1 -TAT"TwoNY

Distribution of the document is unlimited.
II. OUPPLUM904ITARY NOT" 18. SPO". 0 410I0 MILITARY ACTIVITY

None Army Missile Command

.. A FORTRAN IV program which implements the Polynomial
Manipulation System (PMS) is presented and described. PMS
uses the Euclidean Algorithm to reduce a system of poly-
nomials in several variables to a resultant system which
can be solved sequentially as polynomials in one variable
Kronecker's method). PMS is described briefly and re-
erences are given to more complete discussions and to

other pertinent literature.
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6A. IK a LINE a LINE C

ROLE. :T U*LS W1 NOLIB WT

P olynomial.s

Resultant

Eliminant,

Euclid's Algorithm

FORTRAN

Program

UNCLASSIFIED
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